Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

Our research on metal matrix syntactic foams with expanded glass particles has been published in Materials (PDF version).

Abstract Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG) with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles’ strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF). The crushing strength of particles could be doubled by shrinking them for 20 min at 700 ◦C. Owing to the low density of EG (0.20–0.26 g/cm^3), the resulting foam exhibits a low density (1.03–1.19 g/cm^3 ) that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70–80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa.

 

2.5 Ton Drop Test

In June 2017 we have successfully tested a P-MSF impact module. A 2.5 ton drop test was conducted to replicate conditions encountered in an automotive impact. The work has been supported by Transurban with an Innovation Grant.

P-MSF, a novel material invented and developed by our research group was used to manufacture a cylindrical crash element. Its controlled deformation allowed to safely arrest a 2.5 ton concrete block released from an elevation of 5 meters. A short video of the Project can be found below.