Australia China Young Scientists Exchange Program 2018

In the end of October 2018 i was invited to participate in the Australia China Young Scientists Exchange Program 2018 and travel to Beijing. This exchange program is co-organized by the Australian and Chinese governments to promote scientific exchange between these countries.

During the program, I was privileged to meet Prof. Ke Yang from the Chinese Academy of Sciences (Shenyang), Prof. Hao Hai from the Dalian University of Technology, and Prof. Prof. Peizhong Feng who works at the China University of Mining and Technology. I was impressed by the high level of research and the progressive working environments of the research teams lead by these renowned scientists. Several joint Projects have been initiated with the aim to build ongoing collaboration.

Group picture of the Australian participants, MOST and ATSE organisers

Innovyz Commercialisation Program

The large-scale manufacturing of P-MSF has been accepted into the Innovyz Commercialisation Program. Innovyz is “dedicated to accelerating adoption of ideas important to the lives of many people. We do this by creating and delivering the most effective collaborative processes to turn great ideas into great companies, and through these companies deliver the benefit of these ideas to many.” [Innvoyz homepage]

In the following months, I will work with Innovyz, Newcastle Innovation and UoN Research Services to transform our lab research into a commercial product!

Long-term immersion exposure of perlite–aluminium syntactic foam in seawater

Our corrosion study has been published in the Journal of Composite Materials.

Abstract Perlite–metal syntactic foam is a novel lightweight material with good specific strength and excellent energy absorption capabilities. To analyse its suitability in marine applications, perlite–metal syntactic foam has been immersed for 2 years in natural flowing seawater. The change of mass and mechanical properties has been studied as a function of exposure time. Results indicate a slow degradation of mechanical properties that can be attributed to a change of the macroscopic deformation mechanism. Interestingly, no evidence of significant corrosion was observed. Instead, the change in mech- anical properties is triggered by the sedimentation of oxides and sulphates within the expanded perlite particles. Implications towards the long-term viability of such perlite–metal syntactic foam in marine applications are discussed.

Special Issue “Cellular Metals: Fabrication, Properties and Applications”

I am honored to have been invited to join an excellent team of guest editors for a Special Issue in Metals. The other guest editors are Prof. Dr. Isabel Duarte, Prof. Dr. Matej Vesenjak, and Prof. Dr.-Ing. Lovre Krstulović-Opara.

For more information please refer to this website or contact me directly.

This Special Issue is focused on:

  • recent advances in novel manufacturing methods of cellular metals,
  • design of new or improved performances of the cellular structures,
  • geometrical characterization and determination of physical properties,
  • experimental testing, numerical simulations and optimization methods,
  • applications.

Quasi static and dynamic compression of zinc syntactic foams

Our paper has been published in the Journal of Alloys and Compounds. The paper can be downloaded for free before September 21, 2018.

Abstract In this study, two novel zinc syntactic foams are tested in dynamic and quasi-static compression. Expanded perlite (EP) and expanded glass (EG) particles are combined with the ZA27 zinc alloy using counter-gravity infiltration casting. The average densities of the resulting EG-ZA27 and EP-ZA27 syntactic foams are 1.84 g/cm3 and 2.05 g/cm3, respectively. The as-cast foam samples are compressed under quasi-static (0.1 mm/s) and dynamic (284 mm/s) loading conditions. Optical and infrared imaging are used for a detailed investigation of their deformation behaviour. The increasing brittleness of the ZA27 alloy at high strain rates is found to alter the syntactic foam properties at dynamic loading.

Large-scale drop test on perlite–metal syntactic foam

Our manuscript Large-scale drop test on perlite–metal syntactic foam has been accepted for publication in the Journal of Composite Materials.

Abstract Perlite–metal syntactic foam is a low-cost cellular metal intended for use in automotive impact protection. To test the viability of the material a 2.5 ton drop test was conducted. Impact mass and energy were selected to replicate the conditions of a frontal impact between a large passenger vehicle and a crash cushion. A hollow syntactic foam cylinder was manufactured to decelerate the drop weight in a controlled manner. Accelerometers and high-speed imaging were utilized to evaluate the performance of the energy absorbing element.



Simulation of a power system with large renewable penetration

Born out of teaching MECH3760, the newest best-seller has been accepted for publication. The article can be downloaded free of charge until 15.08.2018 – enjoy.
Abstract: This paper presents a simulation software initially developed by the author for educational purposes. The computational tool supports the design of power systems with large penetration by renewable energy sources. In particular, the problematic of power intermittency and its counter strategies are targeted. The main innovation of this simulation is the detailed transient analysis of the essential balance between power generation and consumption. Even so, the focus of the simulation tool is simple usage and interpretation of results, it successfully captures important characteristics of renewable power systems. The user selects the composition of a power system from conventional power plants, photovoltaic, windpower and tidal power. Following system definition, power generation and power demand are calculated based on local weather data. Energy storage can be added to balance mismatches between power demand and supply. Following the completion of a simulation system autonomy, carbon emission and electricity cost are evaluated to assess the performance of energy systems.

Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams

Our new article Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams  has been published in MSEA. For the next 50 days, the manuscript can be downloaded for free.


The effect of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams (EG-MSF) was investigated. The foams were fabricated via counter gravity infiltration of a packed bed of recycled expanded glass (EG) particles. The metallic matrix of all foam samples was A356 aluminium. Different particle sizes were considered, i.e. diameters between 1–1.4, 2–2.8 and 4–5.6 mm. The microstructures of EG-MSF were investigated by optical and scanning electron microscopy and the grain size of the aluminium alloy was found to increase with EG particle size. Uni-axial compression testing of EG-MSF indicated that its mechanical properties depend both on foam density and particle size. Smaller particles were found to dampen plateau stress oscillation and improve the energy absorption characteristics of EG-MSF.